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Networks are useful for describing systems of interacting objects, where the nodes represent the objects and
the edges represent the interactions between them. The applications include chemical and metabolic systems,
food webs as well as social networks. Lately, it was found that many of these networks display some common
topological features, such as high clustering, small average path length �small-world networks�, and a power-
law degree distribution �scale-free networks�. The topological features of a network are commonly related to
the network’s functionality. However, the topology alone does not account for the nature of the interactions in
the network and their strength. Here, we present a method for evaluating the correlations between pairs of
nodes in the network. These correlations depend both on the topology and on the functionality of the network.
A network with high connectivity displays strong correlations between its interacting nodes and thus features
small-world functionality. We quantify the correlations between all pairs of nodes in the network, and express
them as matrix elements in the correlation matrix. From this information, one can plot the correlation function
for the network and to extract the correlation length. The connectivity of a network is then defined as the ratio
between this correlation length and the average path length of the network. Using this method, we distinguish
between a topological small world and a functional small world, where the latter is characterized by long-range
correlations and high connectivity. Clearly, networks that share the same topology may have different connec-
tivities, based on the nature and strength of their interactions. The method is demonstrated on metabolic
networks, but can be readily generalized to other types of networks.
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I. INTRODUCTION

A network, or graph, consists of a set of nodes, from
which selected pairs are connected by edges. Such math-
ematical constructions provide a useful description for sys-
tems of interacting objects. More specifically, network con-
cepts are used in the analysis of chemical and metabolic
systems as well as food webs and social networks. In recent
years, there has been much progress in the analysis of the
topology of these networks. The network topology can be
characterized by features such as the number of nodes, J, and
the average degree �k�, namely, the average number of edges
that are connected to a node. A more detailed description of
the network topology is given by the degree distribution,
P�k�, which is the probability that a randomly selected node
has exactly k edges. Another important topological feature
measures the tendency of a network to support the formation
of cliques. A clique is a fully connected set of nodes, namely,
each pair of nodes in such a set is connected by an edge. The
tendency of a network to form cliques can be characterized
by the clustering coefficient �1–4�. Roughly speaking, when
a network has a high clustering coefficient it is considered to
be highly connected. A low clustering coefficient implies that
the network is only loosely connected.

Networks exhibit a unique metric, in which the distance,
d, between any two nodes is given by the minimal number
of edges one has to cross in order to pass from one node to
the other. In some cases, the distance can be used as a mea-
sure for the connection between a pair of nodes. This is
based on the assumption that two directly reacting nodes
�d=1� strongly affect each other, whereas distant nodes
weakly affect one another. The average path length in a net-
work, �d�, is obtained by averaging over the distance be-

tween all pairs of nodes in the network. The parameters de-
fined above were evaluated for random graphs and their
dependence on J and �k� was found �5–8�. However, the
analysis of realistic networks shows that they are very differ-
ent from random graphs �9�. In realistic networks it is com-
mon to find surprisingly low average path lengths, and rela-
tively high clustering coefficients. In many cases, the degree
distribution follows a power-law form, rather than the Pois-
son distribution which is the signature of random networks.
These features were found to appear in social networks
�1,4,9–18�, the world wide web �19–24�, ecological networks
�25–28�, and metabolic networks �29–31�.

While the topological properties of realistic networks
have been elucidated, the implications on the functionality of
these networks are not fully understood. The small average
path length and the high clustering of many realistic net-
works, render them as small-world networks. At first glance,
the small-world characteristics imply that realistic networks
function as highly connected systems. Indeed, one expects
that if the distance between two nodes is small, the correla-
tion between them will be strong. For instance, in the case of
a metabolic network, the concentrations of interacting pro-
teins will strongly depend on each other. A perturbation in
the concentration of one protein is likely to affect the con-
centration of the other. This might lead to the conclusion that
small-world networks are highly susceptible to local pertur-
bations, as almost all the nodes are just a short distance
away. The problem with this topological analysis, is that it
does not relate to the specific function of a given network or
to the strength of the interactions between its nodes �32�.
Consider, for instance, a metabolic network and an ecologi-
cal network sharing the same topology. In what sense can
these two networks be regarded as similar networks? Even if
the two have the same topological structure, the nature of
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their functional behavior is fundamentally different. The pro-
cess of predation may lead to different behavior than the
process of chemical reaction between proteins. Even two
metabolic networks may function differently if the interac-
tion strengths in one network are higher than in the other.

In this paper, we present a method for obtaining the cor-
relation matrix of a given network. The elements of this ma-
trix provide the magnitudes of the correlations between pairs
of nodes in the network. In certain cases the matrix can be
used to characterize some of the global features of the net-
work’s functionality. For instance, it can be used to identify
domains of high correlations vs domains of low correlations.
Another use of the correlation matrix is in quantifying the
connectivity of a network in a way that accounts both for its
topology and for the specific processes taking place between
its nodes. This method, referred to as the network correlation
function �NCF� method, enables us to determine whether a
topological small-world �TSW� network will also be a func-
tional small-world �FSW� network. A network will be re-
garded as an FSW network if the correlations between its
nodes are typically high, and thus the state of one node is
highly dependent on that of the others. Here, we apply the
method to metabolic networks with various topologies and
different interaction strengths. In these networks, each node
represents a reactant, and is assigned a dynamical variable
that accounts for the concentration of this reactant. The time
dependence of these concentrations is described by a set of
rate equations. The equations include terms that describe the
interaction processes in the given network. They account
both for the topology and for the functionality of the net-
work. From the solution of the rate equations under steady
state conditions one can extract the correlation between each
pair of nodes. In certain cases, networks are found to have a
typical correlation length. If the distance between two nodes
is much higher than this length, the correlation between them
is negligible. To quantify the connectivity of the network,
one compares the correlation length with the average path
length. In case that the average path length is smaller than
the typical correlation length, the network will be considered
as an FSW network. In this case, local perturbations will
have a global effect on the network. The FSW network will
thus be regarded as strongly connected. On the other hand, if
the average path length is larger than the typical correlation
length, the network will be considered as weakly connected.

The paper is organized as follows: in Sec. II, we present
the methodology and demonstrate its applicability to meta-
bolic networks. In Sec. III, we analyze some simple, analyti-
cally soluble networks, and in Sec. IV we present a compu-
tational analysis of a set of more complex networks,
culminating in an example of a scale-free network. The re-
sults are summarized and discussed in Sec. V.

II. METHOD

Below, we present the NCF method for evaluating the
connectivity of interaction networks. For concreteness, we
focus on the specific case of metabolic networks. It is
straightforward to generalize the method to other types of
networks. Consider a metabolic network consisting of J dif-

ferent molecular species, Xi, i=1, . . . ,J. The generation rate
of the Xi molecules is gi�s−1�. Once a molecule is formed it
may undergo degradation at a rate wi�s−1�. Certain pairs of
molecules, Xi and Xj, may react to form a more complex
molecule Xk �Xi+Xj→Xk�. In general, the product molecules
Xk may be reactive and represented by another node in the
network. For simplicity, in the analysis below, we assume
that the Xk molecules are not reactive and thus do not play a
further role in the network. We also limit the discussion to
the case in which a molecular species does not react with
itself, namely, reactions of the form Xi+Xi→Xk
are excluded.

The reaction rate between the Xi and Xj molecules is
given by the reaction rate matrix A. Its matrix elements are
aij�s−1�, where i , j=1,2 , . . . ,J. Note that for noninteracting
pairs of molecules aij =0. The network topology matrix, M,
is also a J�J dimensional matrix, which is defined as fol-
lows: Mij =1 if Xi and Xj react with each other, and Mij =0
otherwise. Let Dij be the distance between the species Xi and
Xj in the metric of the network. The average path length is
thus

�d� =
1

J�J − 1� �
i,j=1

J

Dij . �1�

The parameter �d� provides some information as to the con-
nectivity of the network, but only in the topological sense.

In order to account for the functionality of the network,
we consider the rate equations, which take the form

dni

dt
= gi − wini�t� − �

j=1

J

aijni�t�nj�t� , �2�

where ni�t� is the time dependent concentration of the mol-
ecule Xi. The first term on the right hand side of Eq. �2�
accounts for the generation of Xi molecules. The second term
accounts for the process of degradation, and the third term
accounts for reactions between molecules. The steady state
�SS� solution of the rate equations, ni, can be obtained by
setting the left hand side of Eq. �2� to zero. One obtains

ni =
gi

wi
eff , �3�

where wi
eff=wi+� jaijnj is the effective degradation rate. Our

goal is to characterize the correlations between the different
species around the steady state condition. Roughly speaking,
we are asking the following question: While at steady state,
to what extent does a small perturbation in the concentration
of the species Xj affect the concentration of the species Xi?
To this end, we define the first-order correlation matrix as

Cij = � �ni

�nj
�

SS
, �4�

which, using Eq. �3�, takes the form
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Cij = −
aijgi

�wi
eff�2 . �5�

Note that the elements of the first-order correlation matrix
are nonzero only if the species Xi and Xj directly interact
with each other. Topologically, this means that the matrix
element Cij vanishes unless Dij =1. Indirect correlations be-
tween species that are connected via a third species are not
accounted for �hence the term first-order correlation matrix�.
To account for indirect correlations, one has to compute the
complete correlation matrix

Gij = � dni

dnj
�

SS
. �6�

Clearly, the diagonal terms of this matrix must satisfy

�dni

dni
�

SS
= 1, �7�

for i=1, . . . ,J. For the off-diagonal terms, i� j, one can
write

� dni

dnj
�

SS
= � �ni

�nj
�

SS
+ �

k=1

k�j

J � �ni

�nk
�

SS
�dnk

dnj
�

SS
. �8�

In matrix form, these equations become

	 Gii = 1

Gij = �
k=1

J

CikGkj �i � j� .
 �9�

Equation �9� is a set of J�J coupled linear equations. Their
solution provides the complete correlation matrix, Gij.

Typically, one expects the correlation between two spe-
cies to decay as a function of the distance, Dij, between
them. The rate of this decay provides the correlation length.
To obtain the correlation function we identify all pairs of
species i and j that are separated by a distance d from each
other. We then average the magnitude of the correlations,
�Gij�, over all these pairs. The correlation function vs distance
takes the form

Fcor�d� =
�i,j=1

J �Gij��d,Dij

�i,j=1
J �d,Dij

, �10�

where d is an integer. The function �x,y =1 if x=y and zero
otherwise. Note that in the definition of Fcor�d� the absolute
value of the matrix terms Gij was used. This is because cer-
tain pairs of species Xi and Xj may be positively correlated,
and others may be negatively correlated. In any case, the
focus here is merely on the strength of their mutual correla-
tions and not on the sign of these correlations.

To obtain the correlation length, one may fit the function
Fcor�d� to an exponent of the form K exp�−d /d0�. The dis-
tance d0 is the correlation length. It approximates the dis-
tance within which strong correlations between different spe-
cies are maintained. This distance is determined by the
dynamical processes and by the characteristic rate constants
of a specific network. It thus accounts not only for the topol-

ogy of the system, but also for its functionality. Finally, we
define the connectivity of a network as

� =
d0

�d�
. �11�

In the limit where d0 is much greater than the average path
length, most of the nodes are within the correlation length
from one another, and the components of the network are
highly correlated. The concentrations of different species are
strongly dependent on each other, and the network is an FSW
network. Correspondingly, one obtains that ��1. In case
that d0 is much smaller than the average path length, the
effect of a perturbation in the concentration of one species
decays on average before it reaches most of the other spe-
cies. Perturbations are thus local, and the connectivity of the
network is said to be low. While topologically, such a net-
work might be considered a small-world network, function-
ally it is a loosely connected network.

III. ANALYTICALLY SOLUBLE NETWORKS

A. Linear Metabolic Network

To demonstrate the NCF method, we now refer to a set of
simple examples, which are analytically soluble. Consider a
linear metabolic network of J species �J�1�. The species Xi,
i=1, . . . ,J, reacts with its nearest neighbors, namely, Xi−1
and Xi+1. This network is shown in Fig. 1. For simplicity, we
take all the reacting species to have identical parameters,
namely, gi=g and wi=w for i=1, . . . ,J. Also, aij =a in case
that i= j�1, and aij =0 otherwise. Taking the limit in which
the number of species J is very large, we can avoid the
complexities related to the boundaries of the network. Under
these conditions, the steady state solution for all the species
is the same, enabling us to omit the index i from the steady
state concentrations ni. The reaction rate matrix for this net-
work is

A =�
0 a 0 . . . 0

a 0 a 0

0 a 0 a 0

] � ]

0 0 . . . a 0 a

0 0 . . . a 0

 . �12�

For a linear network, the average distance between pairs is
�d�= �J+1� /3, which for J�1, can be approximated by

FIG. 1. The linear metabolic network. Each molecular species Xi

reacts with its two nearest neighbors, Xi−1 and Xi+1.
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�d� =
J

3
, �13�

namely, �d� scales linearly with J. The clustering coefficient
for this network is zero. Thus, from the topological point of
view, the linear network cannot be considered a small world.
The rate equation for the linear metabolic network is

dn

dt
= g − wn�t� − 2an2�t� , �14�

leading to the steady state solution

n =
− w + �w2 + 8ag

4a
. �15�

The first-order correlation matrix takes the form

C =�
0 q 0 . . . 0

q 0 q 0

0 q 0 q 0

] � ]

0 0 . . . q 0 q

0 0 . . . q 0

 , �16�

where q=−ag / �w+2an�2 �Eq. �5��. Using Eq. �15�, one ob-
tains

q = −
4ag

�w + �w2 + 8ag�2
. �17�

Since the parameters a, g, and w are positive, it is easy to see
that q takes values only in the range −1 /2�q�0. This fact
will be used in the analysis below.

To obtain the complete correlation matrix, one has to
solve Eq. �9�. In the case of a linear metabolic network, it
takes the form

�Gii = 1

Gij = q�Gi+1,j + Gi−1,j� �i � j� .
� �18�

Based on the symmetry of the problem, it is clear that for a
given choice of the parameters, the correlation between the
species Xi and Xj depends only on the distance d= �j− i� be-
tween them. Using this indexation, Eq. �18� becomes

�G0 = 1

Gd = q�Gd+1 + Gd−1� �d � 1� ,
� �19�

where Gd is the correlation matrix term for pairs of species
Xi and Xj where �j− i�=d. Since the correlation is expected to
decay exponentially as a function of the distance between the
nodes, we search for a solution of the form Gd=exp�−kd�.
Inserting this expression into Eq. �19� we obtain two possible
solutions of the form

k = ln�x � �x2 − 1� , �20�

where x=1 /2q. Since the parameter q is limited to the range
−1 /2�q�0, the parameter x can take values only in the
range −��x�−1. The physically relevant solution must sat-
isfy the condition that the correlation between very distant

species will vanish. This constraint requires that
�x��x2−1�	1. To satisfy this condition for −1 /2�q�0,
one has to choose the solution where the square root is sub-
tracted. The result is

k = ln�x − �x2 − 1� + i
 , �21�

where i=�−1. The correlation between species as a function
of the distance d between them is thus

Gd = �− 1�dexp��ln�x − �x2 − 1��d� . �22�

The prefactor of the exponent accounts for the fact that since
q�0, the correlations between directly interacting species
are negative. Thus, pairs of species which are next-nearest
neighbors in the network tend to have positive correlations
between them. The correlation function �Eq. �10�� is the ab-
solute value of Gd, which comes to be

Fcor�d� = e−d/d0, �23�

where

d0 = �ln�x − �x2 − 1��−1 �24�

is the correlation length of the network. It is interesting to
examine the limit in which q→0. In this limit, the correla-
tions are weak and the typical correlation length converges to
d0=−1 / ln�q�. The correlation function approaches Fcor�d�
��q�d. In this limit, the correlation between a pair of species
is dominated by the shortest path between them. For each
step along that path, the correlation is multiplied by a factor
of q. Thus, the magnitude of the correlation between a pair of
species at distance d from each other is approximated by �q�d.

One can identify two limits. In the limit where ag�w2

the correlations are strong, q→−1 /2 and d0→�. In this
limit, the reaction process is dominant and long-range corre-
lations are observed. In the limit where ag�w2, the correla-
tions are weak, and q→0. In this limit the degradation pro-
cess is dominant and the correlation length is small. In Fig.
2, we present the correlation length, d0, as a function of the
parameters a, w, and g for a linear metabolic network. The
correlation length increases with a and g �as the reaction
process becomes dominant�, and decreases with w �as the
process of degradation becomes dominant�.

Using Eqs. �11� and �13�, the connectivity � can be ex-
pressed by �=3d0 /J. The linear network clearly demon-
strates the difference between the concepts of TSW networks
and FSW networks. In the topological sense it is as far as a
network can be from a small-world network, as the distance
scales linearly with the network size, and the clustering co-
efficient is zero. However, in the functional sense the linear
network can be a small-world network, when the reaction
terms are sufficiently dominant, enabling d0 to become larger
than J.

In order to examine the theoretical predictions of the
method, we conducted a simulation of the long linear meta-
bolic network described above. In this simulation we con-
structed a linear network of J=100 reacting species with
periodic boundary conditions, namely, X0 reacts with X99. At
time t=0 we assigned to each reacting species its steady state
concentration ni. Then we forced the concentration n0 to be
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slightly above its steady state value, namely, n0�t�=n0+�n0,
where �n0�n0. We then let the network relax to its new
steady state. We denote the resulting change in the steady
state concentration of the species Xi by �ni. In Fig. 3, we
show the absolute value of �ni /�n0 as a function of d, the
distance of the node Xi from the perturbed node, X0. These
results, obtained from direct integration of the rate equations,
are shown for different values of the reaction rate a �sym-
bols�. When a increases the typical correlation length be-
comes higher, and the effect of the local perturbation of X0
extends to more distant species. The results are in good
agreement with the theoretically derived correlation function,
Fcor�d� �Eq. �23�� �solid lines�. Slight deviations appear for
distant species. This is because in numerical simulations, one
must choose �n0 to be a finite perturbation. The resulting
deviation in the rest of the species is thus affected by higher-
order terms in the Taylor expansion, which are not accounted
for by our method. Here, the generation rates and the degra-
dation rates of all the species are g=1 and w=1, respectively.
The network becomes an FSW network once d0�17, which
is approximately the average path length for this network.
This condition is satisfied for a�2�105.

B. Perfect Tree Network

Hierarchical structures are common in realistic networks.
For instance, ecological networks have in many cases dis-
tinct trophic levels. Social organizations are also constructed
in a treelike framework. Here, we relate to a hierarchical
metabolic network. Consider a metabolic network of J nodes
where each node is assigned a level l �l=0, . . . ,N�. The high-
est level l=N consists of a single node, referred to as the

root. Each node at level l is then connected to exactly one
node at level l+1 �the parent� and m nodes at level l−1 �the
siblings�. The parameter m is defined as the order of the tree.
The degree of all the nodes �except those at the levels zero
and N� is thus r=m+1 �Fig. 4�. Since this network is hierar-
chical, the up and down directions are well-defined. Stepping
from a node at level l to a node at level l+1, will be consid-
ered going up the network, while stepping from level l to
level l−1 is going down the network. Note that in a treelike
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FIG. 2. The correlation length, d0, of the linear metabolic net-
work vs the generation rate, g �a�; the degradation rate, w �b�; and
the reaction rate, a �c�. High connectivity is reached when the pri-
mary process is the reaction process �proportional to g and a�. The
correlation length d0 decreases with increasing w �as the degrada-
tion becomes dominant�.
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FIG. 3. �Color online� The correlation function Fcor�d� for the
linear metabolic network as obtained from a numerical simulation
for different values of the interaction rate a �symbols�. To conduct
the numerical test, we integrate the equations for the linear network
and bring them to the steady state condition. Then, we force a small
perturbation �n0 on the concentration n0 of the species X0. We
evaluate the correlation function using Fcor�d�= ��nd /�n0�. The cor-
relations decay exponentially with the distance between species.
The typical correlation length increases as the reaction rate is in-
creased. The results are in agreement with the theoretical results of
Eq. �23� �solid lines�. Slight deviations appear due to the fact that in
numerical simulations �n0 must be finite.

FIG. 4. A treelike network with N=5 levels. Each node is linked
with exactly one node at the level above it �father�, and m nodes at
the level below �siblings�. The top node �here at level l=5� is the
root node. The order of the tree is m=2, and the degree of the nodes
is r=3. The path between a pair of nodes is characterized by the
number of upward steps followed by the number of downward steps
to get from one node to the other. For the path between the two
shaded nodes d� = �2,3�.
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network it is not possible to go sideways, as there is no edge
connecting two nodes at the same level. Consider a species
Xi, which is at a distance d from some other species Xj. The
path between them consists of u steps up the network and v
steps down the network. The total distance satisfies d=u+v,
and the path between them can be noted by d� = �u ,v�. For
example, the path between the two shaded nodes in Fig. 4 is
d� = �2,3� and the distance is d=5. Two species are said to be
located in the same branch if in the path between them either
u=0 or v=0. The reaction rate matrix and the first-order
correlation matrix have nonzero values only for directly in-
teracting species, namely, for pairs of species where either
u=1 and v=0, or v=1 and u=0.

In order to avoid the complexities related to the bound-
aries of the network, we consider the case in which N�1.
For simplicity, we take the generation and the degradation
rates to be gi=1 and di=1 for i=1, . . . ,J. The reaction rate is
aij =a for each pair of nodes i and j that react with each
other. Under these conditions, the network is symmetrical
and the rate equations are identical for all nodes

dn

dt
= 1 − n�t� − ran2�t� . �25�

The steady state solution is thus

n =
− 1 + �1 + 4ra

2ra
, �26�

and the nonzero elements in the first-order correlation matrix
�Eqs. �4� and �5�� are

q = −
4a

�1 + �1 + 4ra�2
. �27�

Two limits are observed. In the limit of strong interactions,
where a�1, the matrix elements approach q�−1 /r. In the
limit of weak interactions, where a�1 one obtains q�−a. In
any case the values that q can take are limited to −1 /rq
0.

For an infinite perfect tree with uniform rate constants, the
correlation between all pairs of species with that same values
of u and v are the same. We denote this correlation by Gu,v.
In each line i of the first-order correlation matrix, there are
exactly r nonzero terms. One term for Xi’s parent and m
terms corresponding to Xi’s siblings. The correlation Gu,v
between two species Xi and Xj is thus carried via the parent
of the species Xi, for which the correlation with Xj is Gu−1,v,
and via the m siblings of the species Xi, for which the corre-
lation with Xj is Gu+1,v. Equation �9� thus takes the form

	G0,0 = 1

G0,v = q�G0,v+1 + G0,v−1 + �m − 1�G1,v� for v 	 0

Gu,v = q�Gu−1,v + mGu+1,v� for u 	 0

 .

�28�

The first equation states that the correlation of every species
with itself is unity. The second equation accounts for the
correlations between species at the same branch, measuring
the effect of variation in the higher level node on a node at a

lower level. The third equation accounts for all the correla-
tions that are not included in the first two equations. More
specifically, it includes the correlations between species from
different branches. It also includes the correlations between
pairs on the same branch, measuring the effect of variation in
the lower level node on a node at a higher level. We seek a
solution of the form Gu,v=e−k�·d�, where k� = �k1 ,k2� satisfies the
condition that correlations vanish between distant species.
From the third equation one obtains

k1 = ln� 1

2q
�1 � �1 − 4mq2�� , �29�

while from the second equation one obtains

k2 = ln� 1

2q
�� x − �m − 1�q

x
� ��� x − �m − 1�q

x
�2

− 4q2�� ,

�30�

where x=ek1. In order to satisfy the conditions that Gu,v does
not diverge for u�1 while −1 /rq0, one has to choose
the solution with the plus sign for k1 in Eq. �29�. The same
condition for v�1 requires one to choose the solution with
the plus sign for k2 in Eq. �30�.

After some algebraic manipulations it can be shown that
k1=k2. The correlation between any pair of species is thus

Gu,v = ei
de−d/d0, �31�

where d=u+v is the distance between the two species, and

d0 = �ln� 1 + �1 − 4mq2

2q
��−1

�32�

is the correlation length of the treelike network. The correla-
tion function is Fcor�d�=exp�−d /d0�. Note that for r=2
�m=1� this solution coincides with the solution obtained for
the linear network �Eq. �24��. In the limit of weak interac-
tions, where a�1 and q→0 the correlation function ap-
proaches Fcor�d���q�d. In this limit, due to the weak interac-
tions, the correlation between a pair of species is dominated
by the shortest path between them. In the limit of strong
interactions, where a�1 and q→−1 /r, the correlation
length satisfies d0→1 / ln�m�. For m	1 the correlation
length is always finite. Since the average path length of a
perfect treelike network must scale in some form with the
number of levels in the tree, one obtains that for a large
enough tree network the connectivity will always be less
than unity. Thus, a perfect treelike network of order m=2 or
more will never be an FSW. In Fig. 5, we show the correla-
tion length d0 as obtained for a metabolic network with a
perfect tree topology vs the reaction rate a �symbols�. The
results are shown for trees of different orders. Here, g=d
=1, and a is varied.

IV. MORE COMPLEX NETWORKS

To demonstrate the applicability of the NCF method, we
now refer to the analysis of a set of more complex networks.
Here, analytical solutions are not available, and the correla-
tion matrix must be obtained numerically. We analyze three
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different topologies following the structural classification
proposed by Estrada �33�. The first example represents a
class of networks which are organized into highly connected
modules with few connections between them. The second
example will be of a network with a highly connected central
core surrounded by a sparser periphery, and the last example
will be of a scale-free network.

Consider a network constructed of three fully connected
modules �communities�, with a single connection between
each pair of communities. This network is displayed in Fig.
6�a�. Here, each community consists of 13 nodes, adding up
to a total of J=39 nodes. To obtain, ni, i=1, . . . ,39, the
steady state solution for the concentrations of the different
reacting species we solve Eq. �2� using a standard Runge-
Kutta stepper. The parameters we use are gi=1 and di=1.
The reaction rate a between pairs of reacting species is also
set to unity. We then construct the first-order correlation ma-
trix, Cij, as appears in Eq. �5�. The complete correlation ma-
trix, Gij, is obtained from Eq. �9�. It consists of a set of 39
�39 linear algebraic equations. Solving these equations, one
obtains the complete correlation matrix of the network. For
this network, the main insight on the global functions of the
network can be deduced from the complete correlation ma-
trix, which is displayed in Fig. 6�b�. The diagonal terms,
which are all unity, are omitted from the figure. As expected,
strong correlations appear between species within the same
community �sub-matrices along the diagonal�, and vanish-
ingly small correlations appear between species from differ-
ent communities. In fact, the correlation matrix is close to be
a partitioned block matrix, except for a few coupling terms
between the blocks. In this case, the correlation matrix re-
flects the topological structure of the network, which is al-
most fully partitioned into three isolated communities.

We now consider a network, which features a highly
connected central core surrounded by a sparser periphery.
This network consists of J=40 nodes. The nodes Xi, i
=16, . . . ,25, are a fully connected cluster �the core�, while
the 30 additional nodes are connected to all the nodes in the
core, but not to each other �the periphery�. This network is
shown in Fig. 7�a�. Following the same procedure described
above, one obtains the correlation matrix for this network
�Fig. 7�b��. The central square �domain I� shows the correla-
tions between the nodes in the central core. Domains II show
the correlations between peripheral nodes and central ones.
The value of these correlations is high, expressing the strong
dependence of the peripheral nodes on the nodes in the cen-
tral core. On the other hand, for the correlations between the
central nodes and the peripheral ones �domains III�, one ob-
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FIG. 5. �Color online� The correlation length d0 vs the reaction
rate a for a metabolic network with a perfect tree structure. The
results are shown for trees of different order, m �symbols�. For m
=1 the results coincide with those obtained for the linear network.
For higher orders the correlation length is bound from above by
d0

max=−1 / ln�m� �gray horizontal lines�. Thus, for a sufficiently large
treelike network, where the average path length is larger than d0

max,
the connectivity is always less than unity. Treelike networks are
thus not expected to display FSW behavior.
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FIG. 6. �Color online� �a� A network constructed of three fully
connected modules, with single bonds between them. �b� The cor-
relation matrix features high correlations within the modules, and
very small correlations between pairs of nodes from different mod-
ules. The matrix is constructed of three almost uncoupled blocks,
reflecting the near bipartite topology of the network. The diagonal
terms, which are all unity, do not appear in the figure.
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tains very low correlations. This is an expected result, as
deviations in the population of a node from the periphery
should have almost no effect on a node from the core. An
interesting result appears in domains IV. These domains
show the correlations between pairs of nodes that are both
from the periphery. It turns out that the effect of these nodes
on each other is stronger than the effect they have on their
adjacent nodes from the core. This is even though the topo-
logical distance between peripheral nodes is d=2, while the
distance between them and the central nodes is d=1. A small
perturbation in a peripheral node results in a very minor ef-
fect on all the central nodes. However, this minor change in

the core results in a more dramatic effect on all the rest of the
peripheral nodes. This nontrivial result exemplifies the im-
portance of the functional methodology as a complimentary
analysis to the common topological approach. In the two
examples shown above, we focused on the insights provided
by the complete correlation matrix. Below, we show an ad-
ditional numerical example, where we continue the analysis
to obtain the correlation length, d0, and the connectivity �.

One of the common characteristics of many realistic net-
works is their degree distribution that follows a power law,
namely, P�k�=�k−�, where � and � are positive constants
�16,17�. Ecological networks, social networks, and metabolic
networks are characterized by power-law degree distribu-
tions, and are referred to as scale-free networks. Such net-
works include some nodes, called hubs, with a degree that is
orders of magnitude higher than the average degree in the
network. Scale-free networks are considered as highly con-
nected, because due to these hubs, the average path length
between nodes is small. In fact, in metabolic networks the
average path length was found to be as small as �d��3 �31�.
Below, we examine a scale-free network which is a TSW
network, and determine whether it is also an FSW network.

To construct a scale-free network, we use the preferential
attachment algorithm �16�. In this algorithm, a single new
node is added at each iteration and m edges are drawn from
it to the set of existing nodes. The probability of linking the
new node to some existing node Xi is proportional to the
current degree of the node Xi. This way, nodes which already
have a higher degree than others have a high probability of
obtaining more links and becoming hubs. Here, we con-
structed a scale-free network consisting of J=75 nodes. The
number of edges added in each iteration was m=3. The result
is the graph appearing in Fig. 8. The diameter of this network
is D=4 and its average path length is �d�=2.43.
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FIG. 7. �Color online� �a� A network consisting of a dense fully
connected core with a sparse periphery. The peripheral nodes are
each connected to all the central ones, but not to each other. �b� The
correlation matrix shows strong correlations between pairs of spe-
cies from the core �domain I�. The strongest dependence is between
nodes from the periphery to nodes from the core �domains II�. How-
ever, nodes from the core are almost not affected by nodes from the
periphery �domains III�. Interestingly, the correlations between pairs
of nodes from the periphery are not so low, even though they are
not directly connected to one another �domains IV�. The diagonal
terms, which are all unity, do not appear in the figure.

FIG. 8. Scale-free network consisting of 75 reacting species,
constructed using the preferential attachment algorithm. The aver-
age path length of this network is �d�=2.43 and its diameter is D
=4.
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Solving Eq. �2�, we obtain the steady state solution for the
concentrations of all the reactive species. The parameters are
gi=1 and di=1 for i=1, . . . ,75. The reaction rate a between
pairs of reacting species is varied. In this case, obtaining the
complete correlation matrix, Gij, requires the solution of 75
�75 linear algebraic equations �Eq. �9��. We solve these
equations and then average over the correlations between
equidistant species to obtain the correlation function Fcor�d�
�Eq. �10��. In Fig. 9, we show the resulting correlation func-
tion Fcor�d� vs d for three different values of the reaction rate
a �symbols�. When the interaction is suppressed �a�1� the
correlations decay rapidly. When the interaction is dominant
�a�1�, correlations are maintained over long distances. By
fitting the correlation functions to exponential functions
�solid lines�, one obtains the typical correlation length, d0,
and the connectivity, �, of each of the networks. The results
for � vs the reaction rate a are shown in Fig. 10. It is found
that the connectivity increases logarithmically with a. Note
that for a very wide range of values of the parameter a, the
connectivity remains lower than unity. This means that al-
though the examined scale-free network is a TSW, for a very
wide range of parameters it is not an FSW. Only in the ex-
treme cases of very strong interactions, FSW behavior might
emerge.

V. SUMMARY AND DISCUSSION

We have presented the NCF method for the analysis and
evaluation of the connectivity of interaction networks. The
method complements the topological analysis of networks,
taking into account the functional nature of the interactions
and their strengths. The method enables to obtain the corre-
lation matrix, which provides the correlations between pairs
of directly and indirectly interacting nodes. In certain cases,
one may gain insights on the network’s functionality by writ-

ing down the complete correlation matrix. For instance, one
can identify domains of high and low correlations. In other
cases, it is more insightful to extract the macroscopic char-
acteristics of the network from the matrix. In particular, we
have shown how to calculate the typical correlation length of
the network. This correlation length, which has to do with
the functionality of the network, can be compared to topo-
logical characteristics such as the average minimum path
length of the network. The ratio between these two lengths
provides the characteristic connectivity of the network. It
was shown that the topological analysis alone is not suffi-
cient in order to characterize the functionality of a network.
For instance, networks with small-world topology may dis-
play low connectivity, while networks that do not exhibit
small-world topology may display high connectivity. This is
because in terms of the functionality of the network, when
the correlation length is large, even distant species may be
highly correlated. We demonstrated the method for metabolic
networks with different topological structures, and identified
the regimes of low connectivity and of high connectivity. As
expected, these regimes depend on topological features, such
as the number of species or the average minimum path
length between pairs of species. However, they also depend
on functional features such as the type of interactions in the
network and the rate constants of the different processes.

The NCF method was demonstrated for metabolic net-
works, but its applicability is much wider. In fact, the method
could be applied to any reaction network that can be mod-
eled by rate equations. Such networks include metabolic net-
works �34�, chemical networks �35,36�, gene expression net-
works �37,38�, and ecological networks �39�. It is common to
use rate equations for the modeling of these types of net-
works. In certain models of social networks, the flow of in-
formation as well as the spreading of viruses can also be
described by rate equations. The method is not suitable for
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FIG. 9. �Color online� The correlation function vs distance as
obtained for the scale-free network appearing in Fig. 8 for different
values of the parameter a �symbols�. The correlations decay rapidly
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obtaining the correlations in Ising-type models, where the
nodes are assigned discrete variables, which cannot be mod-
eled using continuous equations. The number of elements in
the correlation matrix is equal to the number of pairs of
nodes in the system. When applying the NCF method, one
writes a single linear equation for each matrix element. Thus,
from a computational point of view, the scaling of the NCF
method is quadratic in the number of reactive species. This
enables the application of the method to networks which
include even thousands of nodes. It is straightforward to ex-
tend the application of the method to the other types of in-
teraction networks mentioned above. A few examples are
addressed below.

Consider, for example, gene expression networks. These
networks consist of genes and proteins that interact with each
other. In addition to protein-protein interactions, already ana-
lyzed in the context of metabolic networks, genetic networks
include transcriptional regulation processes, where some
genes regulate the expression of other genes. In recent years,
much information has been acquired about the topology of
these networks, for certain organisms such as Escherichia
coli �38�. The problem is that these networks are very elabo-
rate, and may consist of thousands of nodes. This limits our
ability to simulate their functionality, and thus, currently
most of the theoretical and computational analysis of these
networks is focused on small modules �38�. In this analysis,
one performs simulations of small subnetworks consisting of
only a few nodes. These subnetworks are expected to play
specific roles in the functionality of the network as a whole.
Such approach is valid if an isolated module maintains its
function when incorporated in a large network in which it
interacts with many other genes. We expect the analysis pre-
sented here to provide some insight on this matter. By ob-
taining the complete correlation matrix, one can characterize
the dependence of different proteins and genes on one an-
other. The network may then be divided into subnetworks,

grouping together nodes that are highly correlated, and ex-
cluding ones that are not. It is expected that these modules
will not function significantly differently when analyzed in
the context of the surrounding network nodes. In addition,
the typical correlation length will provide us with an ap-
proximate radius beyond which correlations may be ne-
glected. To simulate a module properly, one needs to include
all the nodes which are within that radius from the module.
Other possible applications regard social networks. For in-
stance, the process of viral spreading could be analyzed
�40,41�. Many social networks are known to be small-world
networks. However, this does not mean that any contagious
disease spreads rapidly. This is, possibly, because for certain
diseases the correlation length is small. Using the method
presented here, one can obtain this correlation length, taking
into account the specific rate constants of the viral flow.

The recent applications of graph theory to many natural
macroscopic systems was enabled by focusing on their topol-
ogy. This approach has been very fruitful, as it uncovered the
mutual structure of networks from many different fields. In
particular, the ubiquity of the scale-free degree distribution,
and the small-world topology was found. However, it still is
not completely clear what functional meaning can be given
to these topological properties in different contexts. A re-
cently proposed approach derives the key aspects of the net-
work functionality from its topological structure �42�. Other
approaches use the Ising Hamiltonian to describe the inter-
action pattern between nodes on scale-free and small-world
networks �43,44�. Functional characteristics such as phase
transitions, and critical exponents are then observed. The
NCF method presented in this paper complements these ap-
proaches. It can be applied to a variety of different interac-
tion processes, such as metabolic, ecological or social inter-
actions, all of which can be described by rate equations. We
believe that the approach presented here will lead to insights
on the behavior of networks and their functionality.
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